The dihadron fragmentation function

&

hadron hadron correlations

Abhijit Majumder Nuclear Theory Group, LBNL

Hot Quarks 2004, Taos, NM

in collaboration with Xin-Nian Wang

OUTLINE

- HEAVY-ION COLLISIONS, MOTIVATIONS
- HIGH P_T JETS, TWO PARTICLE CORRELATIONS
- VARIOUS APPROACHES: PARTONIC INTERACTION!
- FACTORIZATION: NAILING IT DOWN IN e^+e^-
- DGLAP EVOLUTION: NON-SINGLET, SINGLET, GLUONS
- COMPARISONS WITH JETSET!
- IN-MEDIUM MODIFICATIONS PRELIMINARY !!

RESULTS FROM STAR @ QM2004

TWO POSSIBILITIES!

PARTONIC ENERGY LOSS:

• High energy partons are created over the entire collision zone

- Lose energy by partonic interaction, medium may be hadronic or partonic
- Emerge as partons and then fragment

• Partonic energy loss models explain single inclusive suppression pretty well!

(Gyulassy Wang, Gyulassy Levei Vitev, Wang Guo Zhang, Wiedemann Salgado, BDMPS)

- All models depend require a high density of scattering centers
- High density seen as evidence of QGP.
- To explain double inclusive spectra requires a new phenomenological object: Dihadron fragmentation function!

$$D_{q,g}^{h_1h_2}(z_1,z_2)$$
 p $z_1 = \frac{p_1}{p_1}$ $z_2 = \frac{p_2}{p_1}$ $z_2 = \frac{p_2}{p_1}$

HADRONIC ENERGY LOSS:

- Fragmentation occurs inside the hot medium
- Hadrons become independent due to scattering
- Each hadron suffers the same Energy Loss on average

Hadronic scattering models can explain mean single supp. ! Official Greiner et. al. @QM2004, V. Koch (unpublished!)

- Probability of observing two hadrons factorizes P(1,2) = P(1)P(2)
- Each probability is suppressed compared to p+p: P(h) = s p(h)
- Thus the conditional probability is also suppressed compared to p+p collisions

$$\frac{P(1,2)}{P(1)} = \frac{P(1)P(2)}{P(1)} = P(2) = sp(2) = s\frac{p(1)p(2)}{p(1)}$$

$$P(h)$$
 is for $A+A$; $p(h)$ is for $p+p$

• Hadronic absorption models cannot explain the double inclusive spectrum

How does partonic interaction effect dihadrons?

- Important to A+A, d+A, DIS and e^+e^- experiments.
- To date observations in A+A d+Au and DIS

Wish List!

- Definition and factorization of dihadron fragmentation function
- Calculate the effect of medium modification
- Requires the evaluation of 23 twist-4 diagrams, very difficult!
- But medium modification similar to vacuum evolution
- Calculate and check vacuum evolution first (simpler!)...

Defining the Dihadron fragmentation function!

- Fragmentation functions have to be universal
- We need a definition in terms of operators
- Start with simple system : e^+e^- , demonstrate factorization
- Derive evolution (vacuum splitting functions)
- Measure at μ and predict its evolution to scale Q

07

Dihadron fragmentation in e^+e^- Collisions

The basic process may be factorized as:

$$\frac{d^2\sigma}{dz_1dz_2} = \sigma_0 [D_q(z_{1,}z_{2,}\mu) + D_{\overline{q}}(z_{1,}z_{2,}\mu)]$$

 $\sigma_0 = Hard\ Cross\ section$

 $D_q(z_1, z_2, \mu) = Dihadron fragmentation function$

Can be factorized from hard process if $\lambda_{QCD}^2 \ll \mu^2 \ll Q^2$

Measure the function at the scale μ , can be done in 2 ways

Factorized Distribution:
$$D(z_1, z_2, \mu) = D(z_1, \mu)D(z_2, \mu)$$

Event generator distribution: $D(z_1, z_2, \mu) = \frac{1}{N_{matts}} \frac{dN}{dz_1 dz_2}$

- Evolving to a higher scale Q = solving DGLAP equations
- Set of coupled differential equations containing the following processes:

Evolution of Non-singlet quarks

$$D_{N\!S}\!=\!D_q\!-\!D_{\overline{q}}$$

Simpler: contribution from gluon fragmentation cancels out

Single evolution:
$$\frac{\partial D_{NS}(z,Q^2)}{\partial Q^2} = \int_{z}^{1} \frac{dy}{y} P_{q \to qg}(y) D_{NS}(z/y,Q^2)$$

$$\begin{aligned} Double \ evolution: & \frac{\partial D_{NS}(z_{1}, z_{2}, Q^{2})}{\partial Q^{2}} = \int_{z_{1}, z_{2}}^{1} \frac{dy}{y^{2}} P_{q \to qg}(y) D_{NS}(z_{1}/y, z_{2}/y, Q^{2}) \\ & + \int_{z_{1}}^{1-z_{2}} \frac{dy}{y(1-y)} \hat{P}_{q \to qg}(y) D_{q}(z_{1}/y, Q^{2}) D_{g}(z_{2}/(1-y), Q^{2}) \end{aligned}$$

 $\hat{P} = P - virtual\ corrections$

Note: ratio double/single shows little change at intermediate z. Why?

Ratio is the number of associated particles for given trigger!

Regular evolution softens the spectrum: as for single hadrons

Single gluon fragmentation increases multiplicity!

Results from Event generators: a bit ragged (Monte Carlo), fit a function to it!

$$D(z_{\scriptscriptstyle 1,}z_{\scriptscriptstyle 2}) = N\,z_{\scriptscriptstyle 1}^{\alpha_{\scriptscriptstyle 1}}z_{\scriptscriptstyle 2}^{\alpha_{\scriptscriptstyle 2}}(z_{\scriptscriptstyle 1}+z_{\scriptscriptstyle 2})^{\alpha_{\scriptscriptstyle 3}}(1-z_{\scriptscriptstyle 1})^{\beta_{\scriptscriptstyle 1}}(1-z_{\scriptscriptstyle 2})^{\beta_{\scriptscriptstyle 2}}(1-z_{\scriptscriptstyle 1}-z_{\scriptscriptstyle 2})^{\beta_{\scriptscriptstyle 3}}$$

Quark and Gluon evolution fits event generator data very well! Thus we can understand evolution of FF from QCD.

Once again the double to single ratio shows little change

Medium modification

- Apply to DIS of Nuclei (HERMES expt. at DESY)
- A parton in a nucleon is struck by EM probe
- Parton traverses cold medium and then fragments
- Fragmentation function is medium modified.

The medium modification equation looks very similar to the vacuum evolution equation...

$$\tilde{D}_{q}(z_{1,}z_{2,}\mu^{2}) = D_{q}(z_{1,}z_{2,}\mu^{2}) + \int dl_{T} \int_{z_{1}+z_{2}}^{1} \frac{dy}{y^{2}} \tilde{P}_{q \to qg}(y) D(z_{1}/y, z_{2}/y, \mu^{2})$$

$$+ \int dl_T \int_{z_1}^{1-z_2} \frac{dy}{y(1-y)} \hat{\tilde{P}}_{q \to qg}(y) D(z_1/y, \mu^2) D(z_2/(1-y), \mu^2)$$

 \tilde{D} = medium modified fragmentation function

 $\tilde{P} = medium\ modified\ splitting\ function$

Theory curve: (FF(2h)/FF(1h) in A) / (FF(2h)/FF(1h) in vac.)

No. of events with at least 2 hadrons with z_1 > 0.5

No. of events with at least one hadron with z > 0.5

Expt ratio =

same ratio on deuterium

07/24/04

17

Summary & Conclusions!

- We have defined a new phenomenological object in QCD:
 - "The Dihadron Fragmentation function"
- Demonstrated its factorization at LO in e^+e^-
- Derived it evolution equation (has extra components)
- Matched results with JETSET!!
- Allowed a physical understanding of change with scale
- Extended formalism to medium modification in DIS
- Calculation in progress, preliminary results encouraging!

SURFACE EMISSION PICTURE

• Suppose the matter produced is very opaque

• Hence only hard collisions on the surface will produce

observable jets

- Inconsistent with an RAA between participant and binary scaling
- Inconsistent with all energy loss models which require bulk emission and fit single inclusive data!

HEAVY-ION COLLISIONS AND JETS

- Select a leading particle $4 < p_t < 6 \text{ GeV/c}$, $|\eta| < 0.75$
- Associate all other particles (0.15<p_t<4 GeV/c, | η | <1.1) with the leading particle.