

Relevance of baseline hard p+p spectra for A+A and p+A physics at high p_T

HOT QUARKS'04

High p_τ p+p baseline spectra: Overview

Similar Sim

Is high p_T A+A hadroproduction at SPS enhanced or suppressed ? [or ... how to bring (part of) the RHIC high p_T excitement to SPS energies]

Solution $\mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E}$ Solution $\mathbb{E} \subseteq \mathbb{E} \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E} = \mathbb{E} \mathbb{E} \subseteq \mathbb{E} = \mathbb{E} \subseteq \mathbb{E} = \mathbb{E} =$

How accurate are our current ISR-averaged p+p references ? [or ... how to make M.J.Tannenbaum happy]

- Solution States States
- Solution Θ <u>Case IV</u>: p+p $\rightarrow \gamma$ +X at \sqrt{s} = 200 GeV

Is there a way to disentangle suppressed prompt photons (from quenched jet fragmentation) from enhanced (thermal) photons in Au+Au at RHIC ?

[or ... how to make life difficult to PHENIX "photoners"]

Case I: p+p high p_⊤ reference at √s ≈ 20 GeV

Enhanced high p_{τ} production in Pb+Pb @ CERN-SPS ?

Solution 80 MO p+p → $\pi^0 X$ baseline measurement at SPS Pb+Pb energy (√s = 17.3 GeV)

8 R_{AA} for central Pb+Pb constructed with 2 different parametrizations:

4

$p+p \rightarrow \pi + X$ references @ $\sqrt{s} \approx 20$ GeV

 $𝔥 p+p → π^0 X$ parametrizations confronted to data @ √s = 16 – 20 GeV:

New p+p $\rightarrow \pi$ +X reference @ $\sqrt{s} \approx 20$ GeV

Solution [Blattnig00] versus p+p data $\sqrt{s} = 16 - 20$ GeV:

New WA98, WA80 & CERES nuclear modification factors:

 R_{AA} at SPS are not enhanced but consistent with "collision scaling".

Agreement with parton energy loss calculations [I.Vitev nucl-th/0404052] in moderately dense system ($dN^{g}/dy \sim 400-600$)

Indications of high p_T suppression @ SPS

Sentrality evolution of high p_{τ} π⁰ production at SPS:

Solution scaling" in 0-8% central collisions ($R_{AA} \sim 1$).

"Cronin" enhancement in peripheral ... and suppression in 1% most central

Wish list (1): Run RHIC Au+Au, p+p @ $\sqrt{s_N}$ ≈ 20 – 30 GeV (onset of suppr.)

Case II: p+p high p_T reference at \sqrt{s} = 62.4 GeV

p+p high p_T data @ 62.4 GeV

Solution $2 \text{ Au+Au} \otimes 62.4 \text{ GeV}$ measured at RHIC in Run-4. But no concurrent p+p ... p+p $\otimes 62-63 \text{ GeV}$ measured at ISR: pions: π^0 (8), $\pi^{\pm}(4)$; charged hadrons (1)

How consistent are the p+p $\rightarrow \pi$ +X spectra @ 62.4 GeV ?

Unsubstracted π^0 "contaminations" at ISR (1)

All but one measurement at ISR didn't substract the η and direct- γ

Solution 6.45 where P_{π} with the formula of the matrix of the matr

 $BR_{n \to \gamma \gamma} \cdot R_{n/\pi 0} = 0.39 \cdot 0.45 \approx 0.18$

8 18% η contribution needs to be substracted from "unresolved" π^0 spectra.

Unsubstracted π^0 "contaminations" at ISR (2)

All but one measurement at ISR didn't substract the η and direct- γ

γ/π⁰ ratio at high p_{τ} in p+p at 62 GeV (data compared to NLO pQCD):

Prompt γ are a significant source of e.m. clusters above p_T~6 GeV/c that needs to be substracted too

Final corrected p+p spectra @ 62.4 GeV

Uncertainties of final p+p high p_T refs. @ \sqrt{s} = 62.4 GeV

😵 Neutral pions: ± 25%

🚱 Charged hadrons: ± 35%

High p_T suppression in Au+Au @ 62.4 GeV

Sector Propagated uncertainties in the R_{AA} for π⁰:

 p_{T} dependent, mimic physical (e.g. "Cronin"-like) effects

Wish list (2): Run RHIC p+p @ $\sqrt{s_{NN}}$ = 62.4 GeV (detailed quantitative study of \sqrt{s} -dependence of high p_T suppression)

HOT QUARKS '04, Taos, NM, July 24th 2004

David d'Enterria (Columbia Univ.) 15

Case III: p+p high p_T reference at \sqrt{s} = 200 GeV at forward rapidities

d+Au nuclear modification factor @ η = 3.2

High p_T p+p reference spectra vs pQCD (mid-rapidity)

High p_{T} p+p reference spectra vs pQCD (forward η)

Good agreement with NLO pQCD

[calculations by W. Vogelsang]

High p_{T} p+p reference spectrum vs pQCD (η =3.2)

Two highest p_T points (there where the R_{dAu} "suppression" appears) are "enhanced" w.r.t. NLO (which describes all other rapidities, even y = 3.8 !).

Let's be provocative ... Is there d+Au suppression or ("genuine" ?) p+p "enhancement" ?

Case IV: p+p high p_T photon reference at \sqrt{s} = 200 GeV

Thermal photon production in Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV

Solution State (FOS) of underlying matter.
Solution of the thermodynamical state (EOS) of underlying matter.

Medium effects in Au+Au $\rightarrow \gamma$ + X @ \sqrt{s} = 200 GeV

Bowever, (part of the) prompt photons can be distorted by the dense QCD medium (esp. in the region $p_{\tau} < 4$ GeV/c).

Photon production in p+p @ 200 GeV:

"Nuclear modif. factor" Au+Au $\rightarrow \gamma$ + X @ \sqrt{s} = 200 GeV

- Back-of-the-envelope ansatz for γ suppression: $R_{AA}(\gamma \text{ frag.}) = R_{AA}(q,g) \approx 0.25$
- S R_{AA} ≈ Ratio of γ (tot 0.75*frag)/ γ (tot):

Solution $\approx 50\%$ depleted prompt photon yield could mask the expected (enhanced) thermal emission around $p_{\tau} = 2$ GeV/c

Disentangling "thermal" γ from quenched prompt γ

Step 1: Measure $p+p \rightarrow \gamma$ (isolated) + X down to $p_{\tau} = 1$ GeV/c with uncertainties ~10%

Handle on γ from qg-Compton, qqbar annihilation

Step 2: Measure $p+p \rightarrow \gamma(\text{total}) + X$ down to $p_T = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on fragmentation γ production

Step 3: Measure Au+Au $\rightarrow \gamma$ (total) + X down to p_T = 1 GeV/c with uncertainties ~10%

Step 4: (AuAu γ_{total}) – T_{AB}•(pp $\gamma_{isolated}$) Upper limit on thermal spectrum.

Step 5: (AuAu
$$\gamma_{total}$$
) – T_{AB}•(pp γ_{total})

Lower limit on thermal spectrum.

High p_τ p+p baseline spectra: Summary

Similar Sim

Fact: High p_{T} A+A hadroproduction @ SPS is (slightly) suppressed. Wish: Measuring p+p, Au+Au at RHIC at $\sqrt{s} = 20 - 30$ GeV (Run-6 ?)

Section Case II: p+p → π ,h[±]+X at \sqrt{s} = 62.4 GeV

Fact: Current ISR-averaged p+p refs. have uncertainties of order ~30% precluding detailed quantitative study of \sqrt{s} -dependence of high p_T A+A suppr. Wish: Measuring p+p at RHIC at $\sqrt{s} = 62.4$ GeV (Run-5 ?)

Solution $\mathbb{B} \subseteq \mathbb{B} \subseteq \mathbb{B} \subseteq \mathbb{B}$ and $\mathbb{B} \subseteq \mathbb{B} \subseteq$

Fact: High p_T spectra at η=0,1,2.2,(3.2),3.8 are (not) well reproduced by pQCD putting (perhaps) into question the claimed d+Au suppression.
 Wish: Independent confirmation of p+p h⁻ spectrum at η=3.2

Similar Sim

Fact: Depleted prompt γ (from quenched jet fragmentation) can hide the thermal photon signal in Au+Au at RHIC. Wish: Measure isolated and non-isolated γ in p+p at \sqrt{s} = 200 GeV

hot quarks cooking guide (I)

Nuclear modification factor with a incorrect depleted reference:

"burnt" quarks

Nuclear modification factor with an incorrect enhanced reference:

hot quarks cooking guide (II)

Nuclear modification factor with a correct baseline:

Enjoy the hot quarks !

"because we can" $^{\circ}$...

[©]Richard Witt

backup slides ...

BRAHMS R_{cp} vs R_{dAu}

Charged hadron over pion ratio at high p_{T}

Thermal photons from other hydros

Final p+p $\rightarrow \pi$ +X reference @ \sqrt{s} = 62.4 GeV

Solution: $f(p_T) = A/(e^{a \cdot x^2 + b \cdot x} + x/p_0)^n$ Solution: $f(p_T) = A/(e^{a \cdot x^2 + b \cdot x} + x/p_0)^n$

Nuclear modification factors below RHIC energies

B High p_{τ} π⁰ production in ~0 –10% central A+A at SPS and ISR energies:

