#### System-Size Dependence of Strangeness Production at 158 AGeV

### Ingrid Kraus Gesellschaft für Schwerionenforschung for the NA49 Collaboration

## Outline

- Yields and spectra of strange hadrons and pions in p+p, C+C, Si+Si and Pb+Pb collisions at sqrt(s) = 17 GeV
- Origin of strangeness enhancement in A+A

- Chemical freeze out parameters from statistical models
- Kinetic freeze out conditions
- Summary

#### Data



### Strangeness Enhancement



## Strangeness production in p+p

• Enhancement due to multiple collisions?



energy causes strangeness enhancement

Ingrid Kraus, GSi

diss/z2003/0627/

Hot Quarks 2004, Taos Valley, USA, July 18 – 24, 2004

## Strangeness production in A+A

- UrQMD: small fraction of enhancement due to rescattering
- Empirical scaling with escape length, nucleon or collision density hep-ex/0102004

J. Phys. G 27 (2001) 397 Nucl. Phys. A 715 (2003) 474c

Overlapping strings

Nucl. Phys. B 245 (1984) 449 Z. Phys. C 38 (1988) 187

- Higher strangeness production
- Assumption of co-existence of 2 types of particle sources:
  - p+p kind of hadronic particle source
  - Pb+Pb type of connected clusters



Hot Quarks 2004, Taos Valley, USA, July 18 – 24, 2004

Ingrid Kraus, GSi

### Statistical model: canonical suppression

- Canonical strangeness suppression vanishes at
  - Npart ≈ 65 in data
  - Npart  $\approx$  30 in model
- At sqrt(s) = 17 GeV the fireball is spread over 3 units of rapidity Phys. Rev. Lett. 82 (1999) 2471
- Connected clusters might be limited to smaller volumes
  - Si+Si:  $E = 1.7 \leftrightarrow Npart \approx 15$
  - C+C:  $E = 1.4 \leftrightarrow Npart \approx 4$



J. Phys. G 28 (2002) 2095

### Statistical model: chemical freeze-out



• Particle multiplicities are in agreement with an equilibrated resonance gas with suppressed strangeness production  $\gamma_s$ 

## System size dependence at freeze-out

- $\mu_{\rm B}$  does not dependent on size
- $\gamma_s$  follows enhancement
- T<sub>ch</sub> higher in small systems
  - Less inelastic rescattering?



μ<sub>B</sub> [MeV]

300

250

## QCD phase diagram

- Small systems freeze out in the vicinity of the phase boundary
- Only little rescattering in small systems possible
- Statistical equilibrium can be reached in 2 ways
  - Hadronisation process
  - Hadronic rescattering in high density enviroment



Hot Quarks 2004, Taos Valley, USA, July 18 – 24, 2004

Ingrid Kraus, GSi

### **Strange Baryon Potential**



•  $\mu_s$  from particle ratios:

$$\frac{\langle \Lambda \rangle}{\langle \overline{\Lambda} \rangle} \cdot \left( \frac{\langle \mathsf{K}^{-} \rangle}{\langle \mathsf{K}^{+} \rangle} \right)^{2} = \exp\left( 6 \cdot \frac{\mu_{s}}{\mathsf{T}} \right)$$
$$\mu_{s} = \frac{1}{3} \mu_{B} - \mu_{s}$$

Z. Phys. C 61 (1994) 659

12

- Independent of system size
- µ<sub>s</sub> > 0
- In agreement with statistical model

### Blast wave fit



- Simultanious fit of all particles except  $\pi$
- Here: const.  $\beta_{\tau}$

Blast wave model: Phys. Rev. C 48 (1993) 2462

## System size dependence at freeze-out

- T<sub>ch</sub> higher in small systems
  - Less inelastic rescattering?
  - Caused by  $\gamma_s$ ?

14

- Blast wave fit:  $T_{kin}$ ,  $\beta$ 
  - Less elastic rescattering in small systms?
  - Correlation between  $T_{kin}$  and  $\beta$ ?

T<sub>ch</sub> p+p, Pb+Pb: Phys. Rev. C 69 (2004) 024905 T<sub>kin</sub>, β p+p: v.Leeuwen, priv. Comm. T<sub>kin</sub>, β Pb+Pb: Nucl. Phys. A 715 (2003) 161c



### Slopes of pt spectra

• Exponential fit

 $\frac{dn}{dp_t} \propto p_t \cdot e^{-m_t/T}$ 

- $T_{\Lambda} > T_{\overline{\Lambda}}$
- Energy conservation in p+p?
- → Cause in Pb+Pb?



Phys. Rev. Lett. 93 (2004) 022302

Ingrid Kraus, GSi

# Summary

- Strangeness enhancement in A+A compared to p+p
  - Can not be explained with p+p nor rescattering
  - Empirical scaling works with density
  - Overlapping strings cause
    - Higher colour field strength
    - Reduction of canonical suppression
  - Result in higher strangeness production
  - Created clusters are smaller than the fireball

- Freeze out
  - Yields are described by hadron gas model with  $\gamma_{\rm s} < 1$
  - Small systems decouple at higher T<sub>ch</sub> and T<sub>kin</sub> than the larger ones
  - $\mu_{\text{B}}$  and  $\mu_{\text{s}}$  are indepent of system size
  - Radial flow increases with system size
  - Energy conservation effect in small systems?

### **Percolation / Experiment**

• Relations needed:



part

### Strangeness production

- Other picture:
  - Clusters vary also in string density
  - Assume linear increase of string constant κ with density
  - increase of colour field strength in clusters
  - Reproduces data in the same way

